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The finite part of a tube of a circular cross-section is investigated being considered a continuous 
laminar flow system with developed velocity profile and no mass tra~sport by molecular diffu
sion. General relationships derived are being applied for an isothermal non-Newtonian flow 
for which the residence time distribution function is linked with the viscosity function of the liquid 
concerned. Asymptotic and limit properties of distribution functions have been studied simul· 
taneously with functional properties of viscosity function which influence the former. A compari
son of normalized distribution functions is given for various rheological models of viscosity 
function using the concept of pseudosimilarity. Further, an attempt has been made to interpret 
the distribution functions be means of generalized formulae based upon the asymptotic and limit 
behaviour of distribution functions . 

The only continuous flow system for which the hydrodynamic approach l to the residence time 
distribution has been applied is the developed steady tubular laminar flow. This approach has 
been applied so far for problems of axial dispersions2

,3 and for tubular chemical reactors4
, s. In the 

latter ones, the non-Newtonian behaviour was also taken into consideration. This was possible 
only because the assumption of the negligible role of molecular transport compared with the 
laminar convective transport is particularly well fulfilled for the flows of highly viscous liquids 
and suspensions which are very often of a non-Newtonian character. The conclusions of the 
papers4 ,s are limited, however, for the case when viscosity function can be interpreted by the 
power law 

- dv/dr = D[.] = (./K)l/n, (I) 

which is applicable, of course, only in a limited range of variables. and D. 

The aim of this analysis is to test and interpret the conclusions of our previous 
analysis l for a relatively simple case, investigate the residence time distribution func
tions for non-Newtonian laminar tubular flows without the limitations of the 
"power-law" behaviour, estimate the extent of applicability of the results obtained 
for the "power-law" behaviour4

, 5 in cases where the power-law fails to interpret the 
viscosity function of the liquid concerned . 

Part I: This Journal 37, 412 (1972). 
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KINEMATICS OF TUBULAR FLOW 

The kinematics of a fully developed laminar tubular flow is entirely characterised 
by the radial profile of axial velocities, v = v(r). The distribution function of resi
dence times is therefore determined by the velocity profile in the way discussed in the 
first part of our analysis!. Let us limit the finite section of a tube of the length L 
by two planes z = 0 and z = L in the region of a fully developed laminar flow 
(Fig. 1). In this case, the streamlines are straight lines <p = const, r = const. Because 
of the axial symmetry, the transit times of liquid elements along all streamlint;s oCthe 
radius r are identical. The transit time 8 through the tube section Lalong the stream
line of the radius r is obviously given by 

8 = 8(r) = L/v(r) . (2) 

where v(r) is the point velocity. 

I 
Z~O z~L 

FIG. I 

Sketch of the Tubular Flow 

The circle the centre of which is r = 0 and the radius of which is r t represents 
the part of the outlet area through which there is a flow of that portion of the liquid 
having the transit time equal to or shorter than t = L/v(r). The volumetric flow ' rate 
through this area is then given by 

(3a) 

or in the form 6 

(3b) 

The distribution function of residence times F(r), w·hich gives the fraction of the liquid pa; sing 
the system in a time shorter than or equal to t, can be expressed as a ratio of the volumetric flow 
rate Q. and the overall rate Q = Q(R). Thus the dis~ribution function of resideIlce times can be 
presented in a parametric form 2 ,4 as ' ' , 

(4a, b) 

Collec.'ion IGzechoslov. Che!l1 . Commun. /VoL 37/ (972) 



3242 Wein, Ulbrecht : 

In applications, however, the distribution density E(t) defined by 

E(t) = dF(t)/dt. (5) 

is more frequently used. In this case it will be expressed in the parametric form as 

(6a) 

which is a special form of the relationship (I5b) from the first part of this analysis I . The expression 
(6a) can be rearranged using (4b) to give 

(6b) 

where apart from the parameter r l also the residence time is included. It is customary to normal
ize! the distribution functions by introducing the normalized time variable e in the form of 

e = tit = tQ/V, (7) 

where the mean residence time t is 

i = f:(t) t dt = V/Q, (8) 

so that the normalized distribution density E+(e) will be given by 

(9) 

Further, the normalized velocity profile of a laminar tubular flow is obviously given by 

w = v/U = v(nR2 /Q), y = r/ R. (lOa, b) 

Ultimately, the normalized residence time distribution function for a given velocity profile 
w(y) can be written as 

( 11) 

f
YO 

• fYO 

F+(e) = 0 w(y) 2y dy = W(Ye) y~ + 0 (-dwjdy) y2 dy; (12) 

and (13) 

and Ye = Ye( e) being for a given e the solution of the equation (14) 

e - ljw(Ye) = 0 . (14) 

Collection Czechoslov. Chern. Commun. /Vol. 37t (1972) 
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NON-NEWTONIAN TUBULAR FLOW 

The kinematics of the non-Newtonian isothermal developed tubular flow is for a given tube-radius 
R and for a given volumetric flow rate Q (or alternatively for a given pressure drop !!.pI L) fully 
determined by the viscosity function of the liquid concerned. Viscosity function will be usually 
expressed in terms of the apparent viscosity", 

,,== riD (15) 

being the function of the shear stress 

,, = ,,[r]. (16) 

The radial shear stress distribution results from the solution of the momentum balance6 in the 
form of 

(I7) 

where y is given by the equation (lOb) and rw follows from the macroscopic momentum balance as 

(18) 

The expression for the local value of the velocity gradient will be obtained using equa
tions (15)-(1B) which after integration with the boundary condition v{R) = 0 leads 
to a radial profile of axial velocities 

v(r) = (R/rw)f
T

' (r/1][r]) dr. 
Tw(r/ R) 

(19) 

The volumetric flow rate expressed by means of the average velocity U will then be 
given by 

(20) 

where the use of equations (3a) and (3b) has been made. When expressions derived 
above are substituted into equations (n)-(13) and the normalized variables ac
cording to (10a) and (JOb) applied, the normalized distribution functions will be 
obtained in a form including also dimensional parameters resulting from a dimen
sional material function 1]( r) . This formal drawback can be rectified, however, by using 
a normalized* viscosity function 

(21) 

The normalization of non-linear material functions has, apart from formal advantages, 
also further consequences leading finally to the concept of the rheological similarity 7 - 9. 
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in terms of dimensionless quantities 

(22) 

Using the variables defined above the solution of the problem of the developed velo
city profile can be formulated as 

(23), (24) 

B[AJ == (l/A3) I:(S3/m[sJ) ds , (25) 

T = Ay, (-dw/dy) = (l/B[ AJ)(T/m[T)) , (26), (27) 

w(y) = O/AB[ AJ) I:(s/m[s J) ds , (28) 

~ma, . ~ (l/AB[ AJ) ((s/m[5J) ds (29) 

and hence also the relationships for the distribution functions can be transformed 
into dimensionless forms : I 

-=W= - - - -
1 1 I:A. S ds 
B AB[A] Te m[sJ ' 

(30) 

j 
1 __ 1_ I:A. (S2 - T~)sds. 

pre) ~ 0 B[A] A' T. m[.,] , 
B ~ B min 

(31) 

B < BOlin' 

(32) 

B < BOlin' 

. l/B"'in = W",a, , (33) 

where Te is a ,parameter the dependence of which uponB is implicitly given by equa
tion (30). 
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GENERAL PROPERTIES OF DISTRIBUTION FUNCTIONS 

The normalized laminar tubular velocity profile w(y) satisfies the following normalisa-
tions 

w(l) = 0, (-dw/dy)i Y=l = 0, (34), (35) 

Iw(y) 2y dy = I( -dw/dy) y2 dy = 1 . (36) 

In addition to that, further conditions are valid for the isothermal flow 

(37), (38) 

because viscosity functions of arbitrary liquid satisfy the conditions 

I1I[S] ~ 0, d(s /m[s])ds ~ O. (39), (40) 

Consequently the variation of normalized distribution functions for different vis
cosity functions will be rather limited because they depend, according to equations 
(12)-(14), entirely upon the velocity profiles. Typical examples of velocity profiles 
and distribution functions are demonstrated in Figs 2-4 where "power-law" inter
pretation of viscosity function for n = 0, 1 and 00 has been used4

. 

Asymptotic Form of Distribution Functions for e -> 00 

Near the wall, i.e. for y -> I , the velocity of the liquid is very small, IV -> 0 and e -> 00, 

compared with the average velocity in the tube. Under these conditions there will be 
similarly T -> A or meT] -> m[ A], and using equation (32) the following equation 
can be written for this limiting case 

~lim(e3E(e)) = R[A] .m[A] . 
2 Ye-I A 

(41) 

Using equation (27) the previous equation ;~an ~e rearranged into the form 

ET(e)~ . .. I . .2; e -> 00 

. . . ( ~dw/dY)iY = 1 • e 3 
(42a) 

which transforms furt,her into t~e expression 

(42b) 
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for which the Metzner-Rabinowitsch equation 

1 
3 + - = (-dw/dY)IY~l , 

n* 
(43) 

was used with the Metzner index n* defined 10 ,11 as 

n* = ~~ = din (RAP/L). 
din B din (Q/R 3

) 

Using the definition equations for the distribution functions F+( e) and £+( e) their 
asymptotic form for e -+ 00 will be 

F(e) ~ 1 
1 (44a) 

( -dw/dY)IY~l e 2 ' 

F+(e) ~ 1 
n* 

(44b) and - ---
3n* + 1 e 2 

Limiting Form of Distribu tion Functions for e -+ emi" 

The velocity profile w(y) reaches its maximum in the centerline of the tube, w(O) = 

= wmax ' Consequently, the portion of the liquid flowing with a velocity higher than 
w~ax is nil and the minimum residence time will be emin = l/wmax . For any time 
e ~ e min there will be p+(e) = 0; £+(e) = O. For a given viscosity function and 
given conditions of flow the value of the parameter e min is determined by the equa
tions (29) and (33). In general, only the limits can be found in which emin can take 
place. From the condition Wmax > 1 and from equation (38) it can be derived that 
emin > 1/3 if all other normalisation conditions are taken into account. For common 
non-Newtonian liquids for which the Metzner index is 0 < n* < 1 and the apparent 
viscosity is a non-rising function of the shear stress, i.e. dm[sJ/ds ~ 0 and s E <O;A), 
the following inequality is valid, 1/2 ~ e min ~ 1. 

Liquid fractions with residence times close to the minimum value e min will not be 
too far from the centre line of the tube where the velocity profile is relatively flat 
so that it can be approximated by a piston-type profile. It follows from this approxi
mation that £+(e) rises relatively steeply for values of e near to e rnin and after 
reaching a maximum its decrease is again relatively fast in accordance with the cha
racter of the impulse function. This will also be apparent from the £+( e) curves 
given in Fig. 3. For the line that corresponds with the position y = 1 (except for 
viscoplastic liquids), the function £+(e) is given by an indefinite expression 010. 
As long as this can be evaluated at all, equation (45) will be used for that purpose 

Collection Czechoslov. Chem. Commun. IVol. 37/ (1972) 
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(45) 

based upon the expression (32). The limit form of the function £+( B) for the case 
(B - BOlin) -+ 0+ depends upon the limit form of the function m[sJ for s -+ 0. 
Therefore the limit behaviour of distribution functions cannot be studied without 
making assumptions about the character of viscosity function. This will become equal
ly obvious from the first derivative of the function £+(B) which can be written in the 
form 

(46a) 

or in the form 

d£+ = _ £+(B) (3 _ 2AB dm[sJI ), 
dB B B dsz 

s=Te 

(46b) 

Liquids with Finite Ze,.o-Shear Viscosity 

The viscosity function can be expanded for slow shear rates into a satisfactorily 
converging even power series with a non-zero constant term 12. By a suitable choice 

FIG. 2 

Velocity Profiles of the Tubular Power-Law 
Flow 

1 n = 0; 2 n = 1; 3 n = CD. 

Collection Czechoslov. Chem. Comrnun. /Vol. 37/ (1972) 
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FIG. 3 

Normalized Distribution Densities of Resi
dence Times 

Key as for Fig. 2. 
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of the normalisation factors T( and D( the normalized form of this expansion can be 
written as 

(47) 

and using the relationships (45) and (47) the linearized limit form of E+(8) can be 
given as 

(48) 

It is possible to derive also a non-linear asymptotic expression valid in a wider range of e, the 
validity of which is limited only by the conditions !X2s2 ~ !X2S4 and by the requirement of a suf
ficient convergence of the series (47). In the expression (49) 

(49) 

derived from equations (26), (29), (30) and (33) the term sjm[sl can be expanded and after neglect
ing the terms of the fourth and higher orders and inverting the result for an explicit e = efT Bl 
the limit form of the viscosity function can be obtained. Substituting it then into the expression 
(32) the asymptotic form (50) will be found 

1-0 

(}S 

8 

FIG. 4 

Normalized Residence Time Distribution 
Key as for Fig. 2. 

10 

FIG. 5 

Normalized Distribution Densities in Loga
rithmic Coordinates,II* = 0·25 

1 Eyring Model, 2 power-law, 3 Bingham 
model. 
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in which the initial non-linear character of the viscosity function is expressed by the parameter !X2' 

When B ->- Bmin, equation (50) goes over into a linear form (48). 

It is therefore possible to determine the limit form of the function F+( e) if the 
function E+( e) is known. So it will be for the linearized form of E+( e) 

where the values of parameters follow from equation (48). To the best oftheauthors'
knowledge, all experimentally obtained viscosity functions satisfy the condition 
(dm/ds) ~ 0, i.e. fJ. 2 :$; 0 as long as a finite zero-shear viscosity exists. It follows from 
equation (48) or (50) that in such a case E+( e) is a descending function for all 
e > e''1in the shape of which is comparable with the curve 2 in Fig. 3. 

For the sake of completeness, the case of 0(2 > 0 should also be investigated. It is obvious 
from the generally valid relationship (46b) that for sufficiently large values of B the function 
E + (B) is always a descending one. If, however, !X2 satisfied the condition 3 - (2AB/ Bmin) !X2 :;::; 0 
then there is (d£+ / dB) :;::; 0 for B = Bmin and the function £+(B) will have a minimum at the 

point Bo = (2.4B/3)2 · 
]t is possible to get a qualitative picture about the values of 0(2 such as to enable the existence 

of an untypical £ + (B) function when assuming that a formula m(s) = 1 + 0(2s2 satisfactorily 
describes the viscosity function in the entire region of s E <0; A). It follows from expressions 
(29) and (33) that 

If, therefore, O(z satisfies the condition !XzAZ > e 3 
- 1 a round maximum can be detected on the 

£ +( B) curve approximately in the point corresponding with Bo = In (1 + O(zA 2)/3. If, however, 
the value of O(z,4z will be within the limits (0; e3 - I), no round extreme can be found. Insteacl 
of it, as a more detailed analysis indicates, there will be an inflexion point. Finally, the E + (B) 

will be convex for the whole region B > Bmin if 0(2 satisfies the condition O(z.4 2 < O. 

Liquids with a Power-Law Viscosity Function 

In general , the limit viscosity function cannot be always expressed in terms of an even 
power series (47) because the possibility cannot be excluded that there will be either 

lim m[sJ = 00 or 
s-o 

j
lim m[sJ. i+ 1 

s~o 

lim m[sJ .l ,=:= 
s~o 

=0 

where k is an arbitrary integer. These cases can be studied using a generalized power 
expansion 

Ctiliecti(lIf Czechoslov. , Chern. Commull. /Vol. 31/ (1972) 
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(52) 

where n is a real positive number and PI * O. No sensible information can be ob
tained, however, about the limit character of the function £+( e) in the linearized 
form (48) because, according to equation (52), the values of the function m[sJ and 
their derivatives are either infinite or zero for all n =1= 1. It is possible, however, to use 
a procedure starting by substituting equation (52) into equation (49) and by expanding 
the result into a series for e --+ e min and Te --+ O. In this wayan expression for the 
explicit residence time function will be obtained, the inversion of which will lead to 

where 

Te = Zn/(n+l) . (1 + ~. Zn/(n+l) + ... ) 
1 + 2n 

z = (_1 __ ~)AB _ n _ . 
e min e 1 + n 

(53) 

(54) 

The series (53) converges satisfactorily for e -~ emin so that the corresponding 
expression for £+(e) will result as 

£+(e) = ~ . Z(l-n)/ (l+n) . (1 + ~. zn/ (1I+1) + ... ). (55) 
Ae 3 1 + 211 

By analysing equation (55) it follows that for n < 1 there is lim £+( e) = 00 and 
... 6-6m l n 

lim (dE+ Ide) = - 00. On the other hand for 11 > 1 there is E+( emin) = 0 and 
f)-Bmin 

(dE+ Ide)19;9m in = O. In this case a round maximum must exist on the £+( e) curve 
the position eo of which will be approximately given (provided Teo ~ 1) by the rela
tionship* 

Visco plastic Liquids 

11 - 1 
1 +---. 

3(11 + 1) 
(56) 

For viscoplastic liquids the yield stress TO is a characteristic parameter. The 
shear rate under viscometric flow conditions reaches a zero value if the stress 

This is in contradiction with the shape of the E + (8) curve for n = 1·4 in Fig. 1 of the 
paper by Novosad -and Ulbrectit4 . In fact their curve should be as the curve 3, Fig. 3 of this 
work. 
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in the flowing liquid falls below the limit 1:0' For a suitably chosen normalizing 
parameter 1:1 = 1:0 the limit course of viscosity function can be expressed as 

l/m[s] = 0, for s E (0; 1) . (57) 

It follows from equation (27) that the velocity gradient is zero within the limiting 
y E (0; 1jA) and thus W = wntax and e = emin • In this region no information can be 
obtained about the function E+(e) from equations (32) or (13) since the statement 
E+(emin) = 00 has only qualitative meaning. 

For a quantitative analysis of distribution functions, however, some results from the first 
part of this work! can be used. For this particular purpose the region of the flowing liquid will be 
divided into two coaxial parts: the piston-flow region near the centre line of the tube where 
o ~ y ~ l/A and e = emin and the region of the shear flow for which there is l/A < y ~ 1 
and e > emin . The normalized distribution density for the piston-flow region E:(e) can be 
expressed by means of the impulse function ~(x) as 

(58) 

Using the rules for the superposition of normalized functions E+(e) for a set of parallel-ar
ranged flow systems! the distribution density for the system as a whole can be written as 

E+(e) = lip~(e - em in) + E+(e), (59) 
where 

J6
IA

w(y) 2y dy 

lip = J~w(y) 2y dy e minA2 
(60) 

and where the function E.+(e) has been defined for e ~ emin by the relationships (13) or (32). 

Hence the function E+(e) for the flow of visco plastic fluids will be* 

(61) 

The function F+(e) can be calculated in this case also from expressions (12) or 
(31) bearing in mind that the following inequalities are valid 

(62) 

The character of the function Et(e) for e ->- emin can be investigatied using methods 
given in the two previous paragraphs. On the other hand, however, the behaviour of m[sl and its 
first derivative . can be studied at s ->- 1+ instead of at s -> 0+ and the expansion must be done 
at (s - 1) instead of at s. 
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NON-NEWTONIAN RHEOLOGICAL MODELS 

So far only the general expression for the viscosity function m [s] has been used which 
is an approach most suitable for this sort of problem. In . order to understand the 
variability of distribution functions for various types of viscosity function the use 
of empirical formulae known as non-Newtonian rheological models will be made. 

Examples of the most common models are given in Table!. For those, the normalisation of the 
equations describing various aspects of the tubular flow is possible applying methods discussed 
above. Further, the expressions for B, will• X ' w(y), and n* for selected non-Newtonian models 
are given in Tables II. For all those the relationships of the type geT) = 1 - gmin/ g can be 
inverted into the form T = <p -1 (1 - gmin/ g) using algebraic or other tabulated functions. Be
cause the functions E+(Tfj) and F+(Te) for these models can be expressed in an equally simple 
fashion, the distribution functions E + (g) and F + (g) will result in an explicit form. The resulting 
distribution functions for a number of rheological models are given in Figs 5-10 for identical 
values of the Metzner index n* and thus also for identical values of the normalized velocity 
gradient of the wall . Therefore the distribution functions given in anyone figure have common 
asymptotic solution depicted by dotted lines. 

RESULTS AND THEIR DISCUSSION 

For a fully developed laminar flow under the given macroscopic parameters of the 
flow* and within variable physico-chemical properties the velocity profile and thus 

0·5 

FIG. 6 

Normalized Distribution Functions in Linear 
Courdinates, n* = 0·25 

Key as for Fig. 5. 

10 

0.1(}S!:-=-''-'-L---.....L...---e..:.>3~-l2.0 

rIG. 7 

:N'Jrmalized Distribution Densities, n* = 0·5 
Key as for Fig. 5. 

The laminar velocity profile for a given liquid is entirely determined by fixing just one from 
the following pairs of process variables: (R, I:!P/L); (R, Q); (Q, I:!P/L). 
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the distribution functions are entirely determined by the viscosity function. It has been 
found that the distribution function can be approximated by its asymptotic course, 
equations (42b) and (44L), with an accuracy better than 10% for that part of flow 

,·0 

0·5 

FIG. 8 

Normalized Distribution Densitie3, n* = 0'5 
Key as for Fig. 5. 

0-5 

o 
O~--------~~------B--~ 

FIG. 10 

Normalized Distribution Functions, n* = 

= 0·75 
Key as for Fig. 5. 
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FIG. 9 

Normalized Distribution Functions, n* = 

= 0·75 
Key as for Fig. 5. 

'·00 

FIG. 11 

2 
1 

Dependence of emin upon 11* for Selected 
non-Newtonian Models 

1 Eyring model, 2 power-law, 3 Bingham 
model. 
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TABLE! 

Some More Common Non-Newtonian Models and Their Normalization 

Non-Newtonian model Transformation Normalized form of the non-Newtonian 
equation model 

Power 

T =KDn I1fT1- n = K 11m = sl/n-l 

Eyring 

D = DI sinh (T/,,) 11m = sinh (s)/s 

Bingham 

T = '0 + flBD 111= flB 11m = (s - l)/s 

'1= TO 

Rabinowitsch 

D = a. T + br3 
11, = a 11m = 1 + s2 

111/'1 = b 

Bulkley-Herschel 

, = '0 + KD
n ,,= '0 11m = (s - l)l/mls 

7/1,1-n = K 

Ree-Eyring 

T = aD + b arsinh (DID,) " = aDI + b m = m[p] = (1 - E) + E arsinh (p)/p 
E = blr, 
p = DID, = slm 

where the residence time is larger than the average one, i.e. for 0 > 1. In this context 
it is essential to remember that for asymptotic solutions the viscosity function is fully 
described by the Metzner index n*. 

In order to test the deflections of distribution functions for different viscosity 
functions various cases have been compared being characterized by the same 
value of n*, i.e. having the same asymptotic solution. For that purpose the 
functions E+( 0) and F+( 0) calculated for a power-law liquid with n = n* 
have been used. In principle, there are two reasons for doing that: 1. Only for the 
power-law behaviour a simple and unambiguous relationship between the macro
scopic parameter n* and a material parameter n exists which does not depend upon 
the flow variables as long as the flow is laminar. 2. The concept of the Metzner 
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TABLE II 
Fundamental Normalized Relationships Describing the Non-Newtonian Tubular Flow for Selected Non-Newtonian Models 

Model B[A] wmax = 1/ emin 
ifJ(T) = 1 _ w(y) = 1 _ emin 

wmax e n*(A) 

Power _n_.A1/n 1 + 3n (T/A)l/n+l 
3n + 1 l+n 

n 

EyringQ ~{Ch - ~[Sh - ~(Ch - l)]} ch- 1 cosh (T) - 1 b einh (A) )-1 ----3 
AB[AJ cosh (A) - 1 B(A) 

(A - 1)2 3A 2 + 2A + 1 6A 2 
(T~ ly (A - 1)2 (3A 2 + 2A + 1) 

Bingham -A~ 12 3A2 + 2A + 1 A-I 3(A4 - 1) 

A A 3 6 + 3A2 2T2 + T4 2 A2 
Rabinowitsch "4 + 6 3 + 2A2 2A2 + A4 1- 3' A2 + 1/2 

(A - 1)1 /n+1 A2 (~y/n+l (A - 1) M(A, n) 
Bulkley-Herschel A 3 • M(A , n) 

(l/n + 1) M(A , n) A-I A3 - 3(A - 1) M(A, n) 

(A - 1)2 2(A - 1) 1 
M(A, n) = l / n + 3 + l/n + 2 + l/n + 1 

a sh = sinh (A), ch = cosh (A); b Expressions for B(A) and for M(A, n) are in the first column. 
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TABLE III 
Normalized Distrib.ution Densities of Residence Times and Normalized Residence Time Distribu
tion for Selected Non-Newtonian Models 

Model 

Power 

Eyring 

Bingham 

Rabinowitsch 

2n/(3n + 1). l/e3 • (l - l/e*)-(l-n)/(1+n) 

2B(A)/Ae3
• Te/sinh Te , 

Te = arcosh [1 + (cosh A-I) (1 - l/e*)] 

o(e - emin)/eminA2 + (A - 1)/A4 . (3A 2 + 2A + 1/6e3
). 

. (A - 1 + (1/[(1 - l/e*)1/2])) 

1/6e3 • (3 + 2A2)/[1 + (2A 2 + A4) (1 - l/e)]1/2) 

Bulkley-Herschela [o(e - emin)/eminA2] + [(A - 1)/A4
] • M(A, n). 2/e3 

• 

. [I + (A - 1) (1 - l/e*)n/ (n+l)]/[(1 - l/e*)l / (n+ lJ] 

a Expression for M(A , n) see Table II; b the shape of function Te = T(e) for the Eyring model 
see the first column. C For the function M = M(A, n) for the Bulkley-Herschel mpdel see Table II. 

index n* proved itself to be an extremely useful tool for dealing with transport 
processes in tubular flows 7

-
10

. Apart from that the power-law represents a sort 
of "middle-of-the-road" interpretation between the Bingham and Eyring models. 

Using the relationships given in Tables I - III the viscosity function have been 
calculated for the power-law, Bingham and Eyring models and the distribution 
functions were compared for the values n* = 0·05,0'10 ... 0'90, 0·95. It has been 
found that the functions E +(8) and P+(8) calculated for the Eyring and Bingham 
model in the region 8 > 1 do not differ by more than 2'5% from the results for the 
power-law model. Some results for the n* = 0'25, 0·50 and 0·75 are illustrated 
in Figs 5 -10. 

For the region 8 < 1 the deflections for different models grow larger and for 8 min 
the approximation has only a qualitative character. A comparison will show that 
for n* = 0·25 and 8 = 0·76 the distribution function calculated for the power-law 
and Eyring models will be P+(0'76) = 0·45 whilst for the Bingham model it is P+(0'76) 
= O. This is because the limit distribution function strongly depends upon the limit 
viscosity function and further because the value of the parameter 8 min depends 
to a certain extent upon the viscosity function as well even for fixed n*. For a given 
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TABLE III 
( Continued) 

(1 - lie·) [2n/(n + 1)] (1 + 2n/(n + 1) . I/e·) 

[T~ cosh (A) + 2 cosh (Te) - 2Te sinh (Te) - 2l/A 3 B[A] 

[6 + 3(A - 1)2 . (1 - 1/ e*2) + 4(2 + 1/ e*) (A - 1) (1 - 1/ e*)1/2] /(3A 2 + 2A + 1) 

(A - 1) {I/e •. (1 - I/et/(2+n) [2 + (1 + I/e*t/(2+ n). (A - 1)] 

1 - M(A, n) • I/n + 1 + 

+ . + ---. [1 - (1- I/e*)(1+3n)/ (1+n)] • 
2[1 - (1 - l/e*)(1 +2n)/(1 +0)] A-I } 

I/n + 2 l!n + 3 
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(7Ia) 

(7Ib) 

(7Ie) 

(7Id) 

(7Ie) 

type of viscosity function the limit properties of distribution functions can be charac
terized by the forms of these functions in terms of (1 - e"'in/e). Potential deflections 
of emin for a given n* are apparent from Fig. 11 and they correspond with the overall 
range of variability of viscosity function. 

Any further discussion of these discrepancies and their interpretation in terms 
of distribution functions seems to have, however, only a limited value. Mainly 
two reasons speak for that: 1. The limit visocity function m[sJ for T ~ 0 (or s ~ 0) 
are experimentally difficult to obtain* and the extrapolation procedure depends 
upon the interpolation formula used. 2. Rather than the distribution function itself 
its q-th moment is more frequently used in actual applications. Unfortunately, this 
cannot be used if the liquid fully adheres to the wall, because then Vq = 00 for 
q ~ 2. 

So far the most frequent application of distribution function is the prediction 
of conversion functions in continuous flow-reactors. In this case some rather common 
types of homogeneous irreversible reaction equations can be chosen for the integral 

For most experimental arrangements the range of measured shear stresses does not exceed 
two orders of magnitude and any measurement in the region of shear rates smaller than to- 1 s-1 
and larger than 104 s -1 requires specially designed instruments suitable usually only for certain 
types of liquids (e.g. dilute polymer solutions). 
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characteristics as an alternative. A systematic testing of deflections of E+( e) for 
various rheological models at the same n* would probably prove that these deflections 
are insignificant. This conclusion can also be substantiated by considering the expres
sion of the conversion of an irreversible second-order reaction4 

X(q) = E+(e). de f
oo 1 

8ml n Q. e + 1 
(63) 

which undergoes only a ten per cent change of its value when the conditions of flow 
changefrom the Newtonian (n* = 1)to the piston-type flow (n* = 0). This is true even 
in the region where the conversion reaches about 50 per cent. In fact, this example 
represents the largest possible change provided that only the shear-thinning liquids 
are being concerned. 

There is one more reason for neglecting the deviations of E+( e) at n* = idem 
even for e < 1. This is the fact that for e ~ 1 not only the function E+( e) but also 
the function P+( e) is fairly invariable for different rheological models. It follows 
therefore that for a given n* always approximately the same proportion of the liquid 
has its resistance time e larger than one so that the differences in distribution functions 
are mainly concentrated in the interval e E <er;lin, 1). 

The extent of reaction conditions under which the differences of distribution functions 
for a given n* can significantly influence the overall chemical conversion is still uncertain. 

The authors are indebted to Dr K. Wichterle and Dr P. Mitschka for incentive discussions and 
to Miss S. Novdkovdfor her assistance in numerical and computational calculations. 

LIST OF SYMBOLS 

A 
B 
D 
D J 
E(t) 
E+(e) 
pet) 
p+(e) 
K 

L 
mrs] 
n 
11 

n* 
p == s/m 
tlP 
Qt 
Q 

normalized pressure loss, Eq. (23) 
normalized velocity grandient, Eq. (24) 
rate of deformation (s - 1) 

material parameter of viscosity funct ion (s -1) 
distribution density of residence time, (s -1) 

normalized distribution density 
residence time distribution function, dimensionless 
residence time distribution function for a normalized argument, dimensionless 
consistency coefficient, parameter of the power-law viscosity function, Eq. (1), 
(g cm sn-2) 

the length of a finite section of the tube, (cm) 
normalized form of the viscosity function, Eq. (22) 
dimensionless parameter of the power-law viscosity function, Eq. (1) 
dimensionless parameter, Eq. (52) 
dimensionless Metzner index (apparent flow index), Eq. (41) 
normalized shear rate 
pressure loss along the tube section L (g cm -1 s - 2) 

volumetric flow rate for a liquid portion with a residence time shorter than t (cm3 s -1) 

total volumetric flow rate (cm3 S-1) 

radial coordinate (c'm) 
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u 
V 
w 

Y 

Ye 

radius, Eq. (30) (cm) 
radius of a tube (cm) 
normalized shear stress in the expressions for the normalized viscosity function 
normalized shear stress for tubular flow, Eq. (26) 
normalized shear stress for a given value of e, Eq. (30) 
time variable (s) 
mean residence time, Eq. (8) (s) 
mean velocity (cms- 1) 

volume of the continuous flow system (cm3) 

normalized velocity, Eq. (lOa) 
normalized maximum velocity 
normalized radial coordinate 
normalized radial coordinate for a given value of e 
axial coordinate (cm) 
parameters of limit viscosity function 
parameter of the limit viscosity function 
normalized impulse (Dirac) function 
fraction of the liquid which flows at the maximum velocity under viscoplastic flow 
non-Newtonian apparent viscosity (gcm- 1 S-I) 

material parameters of viscosity function (g cm -1 s -1) 

transit time along a given streamline (s) 
normalized residence time, Eq. (7), (l1) 

emin minimal value of the normalized residence time 
eo value of e for which E+(e) gets a continuous maximum 
e* == ejemin 
J.lB parameter of the Bingham model of the viscosity function (g cm - 1 S - 1) 

Vq integral moments of distribution functions, Eq. (63) 
rp angular variable 

shear strees (g cm -1 s - 2) 

'rJ material parameter of the viscosity function (g cm -1 s - 2) 

'r 0 yield stress (g cm - 1 S - 2) 

'rw wall shear stress (g cm -1 s - 2) 

'rrz rz-component of the shear stress tensor in cylindrical coordinates (r, rp, z) 
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